Showing 106 - 120 of 128
Both the hourly and daily data are provided in the product. The hourly data are grouped by day in distinct NetCDF files, which are named as “EPIC_SW_PAR_Hourly_yyyymmdd.nc” where “yyyy”, “mm”, and “dd” denote year, month, and day (UTC time). The daily data are grouped by month in distinct NetCDF...
Both the hourly and daily data are provided in the product. The hourly data are grouped by day in distinct NetCDF files, which are named as “EPIC_SW_PAR_Hourly_yyyymmdd.nc” where “yyyy”, “mm”, and “dd” denote year, month, and day (UTC time). The daily data are grouped by month in distinct NetCDF...
Both the hourly and daily data are provided in the product. The hourly data are grouped by day in distinct NetCDF files, which are named as “EPIC_SW_PAR_Hourly_yyyymmdd.nc” where “yyyy”, “mm”, and “dd” denote year, month, and day (UTC time). The daily data are grouped by month in distinct NetCDF...
Both the hourly and daily data are provided in the product. The hourly data are grouped by day in distinct NetCDF files, which are named as “EPIC_SW_PAR_Hourly_yyyymmdd.nc” where “yyyy”, “mm”, and “dd” denote year, month, and day (UTC time). The daily data are grouped by month in distinct NetCDF...
Both the hourly and daily data are provided in the product. The hourly data are grouped by day in distinct NetCDF files, which are named as “EPIC_SW_PAR_Hourly_yyyymmdd.nc” where “yyyy”, “mm”, and “dd” denote year, month, and day (UTC time). The daily data are grouped by month in distinct NetCDF...
Both the hourly and daily data are provided in the product. The hourly data are grouped by day in distinct NetCDF files, which are named as “EPIC_SW_PAR_Hourly_yyyymmdd.nc” where “yyyy”, “mm”, and “dd” denote year, month, and day (UTC time). The daily data are grouped by month in distinct NetCDF...
Both the hourly and daily data are provided in the product. The hourly data are grouped by day in distinct NetCDF files, which are named as “EPIC_SW_PAR_Hourly_yyyymmdd.nc” where “yyyy”, “mm”, and “dd” denote year, month, and day (UTC time). The daily data are grouped by month in distinct NetCDF...
Both the hourly and daily data are provided in the product. The hourly data are grouped by day in distinct NetCDF files, which are named as “EPIC_SW_PAR_Hourly_yyyymmdd.nc” where “yyyy”, “mm”, and “dd” denote year, month, and day (UTC time). The daily data are grouped by month in distinct NetCDF...
The database contains observational analyses and model results that are used in publications, reports and/or manuscripts in review, related to climate and environmental changes of the Earth system, especially in high-latitude regions. This is for the HiLAT project, which is a SFA supported by DOE...
The database contains observational analyses and model results that are used in publications, reports and/or manuscripts in review, related to climate and environmental changes of the Earth system, especially in high-latitude regions. This is for the HiLAT project, which is a SFA supported by DOE...
Soils give off carbon dioxide, generated by microbes and plant roots, to the atmosphere. How this “soil respiration” (Rs) varies in time, and how it is affected by nearby vegetation, is related to the processes driving it and has implications for how we estimate this flow of carbon across space and...
Some of the most rapid environmental changes on the planet are experienced in high-latitude regions. These changes affect all Earth system components, including the ocean, atmosphere, cryosphere, and marine and terrestrial ecosystems, and have both regional and global implications. The main...
  1. Datasets

    3
The long-term goals of this scientific focus area (SFA) are to develop flexible and extensible modeling capabilities that capture the dynamic multiscale interactions among climate, energy, water, land, socioeconomics, critical infrastructure, and other sectors and to use these capabilities to study...
  1. Datasets

    8
Accurate characterization of the global downward shortwave (SW) and photosynthetically active radiation (PAR) is fundamental for Earth system modeling and global change research. Combined with a machine-learning method, we used the Earth Polychromatic Imaging Camera (EPIC) data onboard the Deep...
  1. Datasets

    54
The objective of Terrestrial-Aquatic Interface (TAI) research in PREMIS is to understand the factors governing C and nutrient movement and transformation through the TAI, and their sensitivities to inundation and salinity within coastal watersheds.
  1. Datasets

    1