Showing 31 - 45 of 78

Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D)...

The geometric organization and force networks of 3D dense suspensions that exhibit both shear thinning and thickening have been examined as a function of varying strength of interparticle attractive interactions using lubrication flow discrete element simulations. Significant rearrangement of the...

Gibbsite, bayerite, and boehmite are important aluminum (oxy)hydroxide minerals in nature and have been widely deployed in various industrial applications. They are also major components in caustic nuclear wastes stored at various U.S. locations. Knowledge of their crystallization and phase...

The split of the 1b1 peak observed in the X-ray emission (XE) spectrum of liquid water has been the focus of intense research. Although several hypotheses have been proposed to explain the origin of this split, a consensus has not yet been reached. Here, we introduce a novel theoretical/computation...

Radiation driven reactions at mineral/air interfaces are important to the chemistry of the atmosphere, but experimental constraints (e.g. simultaneous irradiation, in situ observation, and environmental control) leave process understanding incomplete. Using a custom atomic force microscope equipped...

Aluminum hydroxide (gibbsite, Al(OH)3) powders and their thermally dehydrated forms were rehydrated and irradiated with gamma rays to examine the effects of the collapse of the crystalline gibbsite structure as it is converted to alumina on the transport of precursors of molecular hydrogen to the...

"Visualizing the Hidden Half: Plant-Microbe Interactions in the Rhizosphere" Plant roots and the associated rhizosphere constitute a dynamic environment that fosters numerous intra- and interkingdom interactions, including metabolite exchange between plants and soil mediated by root exudates and the...

Pending Review Microbiomes contribute to multiple ecosystem services by transforming organic matter in soil. Extreme shifts in the environment, such as drying-rewetting cycles during drought, can impact microbial metabolism of organic matter by altering their physiology and function. These...

In highly alkaline solution, aluminum speciates as the tetrahedrally coordinated aluminate monomer, Al(OH)4− and/or dimer Al2O(OH)62−, yet precipitates as octahedrally coordinated gibbsite (Al(OH)3). This tetrahedral to octahedral transformation governs Al precipitation, which is crucial to...

Amongst the challenges for a variety of research fields are the visualization of solid-liquid interfaces and understanding how they are affected by the solution conditions such as ion concentrations, pH, ligands, and trace additives, as well as the underlying crystallography and chemistry. In this...

Gibbsite [α-Al(OH)3] is the solubility limiting phase for aluminum across a wide pH range, and it is a common mineral phase with many industrial applications. The growth mechanism of this layered-structure material, however, remains incompletely understood. Synthesis of gibbsite at low to...

Aluminate salts precipitated from caustic alkaline solutions exhibit a correlation between the anionic speciation and the identity of the alkali cation in the precipitate, with the aluminate ions occurring either in monomeric (Al(OH)4–) or dimeric (Al2O(OH)62–) forms. The origin of this correlation...

Although nanometer-sized aluminum hydroxide clusters (i.e., ϵ-Al13, [Al13O4(OH)24(H2O)12]7+) command a central role in aluminum ion speciation and transformations between minerals, measurement of their translational diffusion is often limited to indirect methods. Here, 27Al pulsed field gradient...

While Zavitsas’ hydration model has been used to determine the activity of water in electrolyte solutions, it has not previously been demonstrated to model the activities of solutes. The present study derives the equations for the activity of solutes in aqueous electrolyte solution mixtures for...

Understanding radiation-induced chemical and physical transformations at material interfaces is important across diverse fields, but experimental approaches are often limited to either ex situ observations or in situ electron microscopy or synchrotron-based methods, in which cases the radiation type...