Journal Article
Journal of Bacteriology, vol. 187, iss. 17, pp. 5877-5884, 2005
Authors
Renhui Li, M. Ben Potters, Liang Shi, Peter J. Kennelly
Abstract
ABSTRACT
The open reading frames (ORFs) encoding two potential protein-serine/threonine phosphatases from the cyanobacterium
Synechocystis
sp. strain PCC 6803 were cloned and their protein products expressed in
Escherichia coli
cells. The product of ORF sll1033, SynPPM3, is a homologue of the PPM family of protein-serine/threonine phosphatases found in all eukaryotes as well as many members of the
Bacteria
. Surprisingly, the recombinant protein phosphatase dephosphorylated phosphotyrosine- as well as phosphoserine-containing proteins in vitro. While kinetic analyses indicate that the enzyme was more efficient at dephosphorylating the latter, replacement of Asp
608
by asparagine enhanced activity toward a phosphotyrosine-containing protein fourfold. The product of ORF sll1387, SynPPP1, is the sole homolog of the PPP family of protein phosphatases encoded by the genome of
Synechocystis
sp. strain PCC 6803. Like many other bacterial PPPs, the enzyme dephosphorylated phosphoserine- and phosphotyrosine-containing proteins with comparable efficiencies. However, while previously described PPPs from prokaryotic organisms required the addition of exogenous metal ion cofactors, such as Mg
2+
or Mn
2+
, for activity, recombinantly produced SynPPP1 displayed near-maximal activity in the absence of added metals. Inductively coupled plasma mass spectrometry indicated that recombinant SynPPP1 contained significant quantities, 0.32 to 0.44 mol/mole total, of Mg and Mn. In this respect, the cyanobacterial enzyme resembled eukaryotic members of the PPP family, which are metalloproteins. mRNA encoding SynPPP1 or SynPPM3 could be detected in cells grown under many, but not all, environmental conditions.