Evidence that Bacterial ABC-Type Transporter Imports Free EDTA for Metabolism

Journal Article
Journal of Bacteriology, vol. 189, iss. 22, pp. 7991-7997, 2007
Authors
Hua Zhang, Jacob P. Herman, Harvey Bolton, Zhicheng Zhang, Sue Clark, Luying Xun
Abstract
ABSTRACT EDTA, a common chelating agent, is becoming a major organic pollutant in the form of metal-EDTA complexes in surface waters, partly due to its recalcitrance to biodegradation. Even an EDTA-degrading bacterium, BNC1, does not degrade stable metal-EDTA complexes. In the present study, an ABC-type transporter was identified for possible uptake of EDTA because the transporter genes and the EDTA monooxygenase gene were expressed from a single operon in BNC1. The ABC-type transporter had a periplasmic-binding protein (EppA) that should confer the substrate specificity for the transporter; therefore, EppA was produced in Escherichia coli , purified, and characterized. EppA was shown to bind free EDTA with a dissociation constant as low as 25 nM by using isothermal titration calorimetry. When unstable metal-EDTA complexes, e.g., (Mg-EDTA) 2− , were added to the EppA solution, binding was also observed. However, experimental data and theoretical analysis supported EppA binding only of free EDTA. When stable metal-EDTA complexes, e.g., (Cu-EDTA) 2− , were titrated into the EppA solution, no binding was observed. Since EDTA monooxygenase in the cytoplasm uses some of the stable metal-EDTA complexes as substrates, we suggest that the lack of EppA binding and EDTA uptake are responsible for the failure of BNC1 cells to degrade the stable complexes.
English