Dense and optical transparent CdWO4 films by sol-gel processing for scintillation applications

Journal Article
Journal of Materials Research, vol. 22, iss. 6, pp. 1527-1536, 2011
Authors
H.M. Shang, M. Bliss, S. Heald, T.K. Sham, F. Heigl, G.Z. Cao
Abstract
In this paper, we report the first successful fabrication of dense and optically transparent cadmium tungstate (CWO) films by sol-gel processing and the study of their optical and x-ray scintillation properties. A new sol-gel processing method was developed using tungstic acid and cadmium nitrate as precursors and hydrogen peroxide as solvent; homogeneous and stable CWO sols were aged at room temperature and used for the preparation of CWO films. A rapid sintering process was investigated and found to be necessary to make dense and optically transparent nanocrystalline CWO films. CWO films were uniform, fully dense, and crack-free, with CWO as the only detectable crystalline phase, as determined by x-ray diffraction. The thickness, density, grain size, and crystallinity of CWO films are all found to be strongly dependent on the sintering conditions and in turn impact the optical and x-ray scintillation properties. Sol-gel-derived dense CWO films demonstrated intense photoluminescence and x-ray excited optical luminescence intensity. The relationships between sol-gel processing, nanostructures, and optical and x-ray scintillation properties are discussed in detail.
English