Journal Article
Blood, vol. 118, iss. 3, pp. 703-711, 2011
Authors
John M. Pagel, Aimee L. Kenoyer, Tom Bäck, Donald K. Hamlin, D. Scott Wilbur, Darrell R. Fisher, Steven I. Park, Shani Frayo, Amanda Axtman, Nural Orgun, Johnnie Orozco, Jaideep Shenoi, Yukang Lin, Ajay K. Gopal, Damian J. Green, Frederick R. Appelbaum, Oliver W. Press
Abstract
Abstract
Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)–streptavidin (SA) conjugate and DOTA-biotin labeled with β-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path length, potentially increasing the therapeutic index and making them an attractive alternative to β-emitting radionuclides for patients with acute myeloid leukemia. Accordingly, we have used 213Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of 213Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5% ± 1.1% of the injected dose of 213Bi was delivered per gram of tumor. α-imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after 213Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a β-emitting radionuclide (90Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of 213Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 μCi of 213Bi- or 90Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for more than 100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an α-emitting radionuclide may be highly effective and minimally toxic for treatment of acute myeloid leukemia.