Substantial convection and precipitation enhancements by ultrafineaerosol particles

Journal Article
Science, vol. 359, iss. 6374, pp. 411-418, 2018
Authors
Jiwen Fan, Daniel Rosenfeld, Yuwei Zhang, Scott E. Giangrande, Zhanqing Li, Luiz A. T. Machado, Scot T. Martin, Yan Yang, Jian Wang, Paulo Artaxo, Henrique M. J. Barbosa, Ramon C. Braga, Jennifer M. Comstock, Zhe Feng, Wenhua Gao, Helber B. Gomes, Fan Mei, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Rodrigo A. F. de Souza
Abstract
Up with ultrafine aerosol particles Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensational growth of water droplets around the tiny particles releases latent heat, thereby intensifying atmospheric convection. Thus, anthropogenic ultrafine aerosol particles may exert a more important influence on cloud formation processes than previously believed. Science , this issue p. 411
English