The Effect of Solvent on the Capacity Retention in a Germanium Anode for Lithium Ion Batteries

Journal Article
Journal of Electrochemical Energy Conversion and Storage, vol. 15, iss. 4, 2018
Authors
Kuber Mishra, Wu Xu, Mark H. Engelhard, Ruiguo Cao, Jie Xiao, Ji-Guang Zhang, Xiao-Dong Zhou
Abstract
A thin and mechanically stable solid electrolyte interphase (SEI) is desirable for a stable cyclic performance in a lithium ion battery. For the electrodes that undergo a large volume expansion, such as Si, Ge, and Sn, the presence of a robust SEI layer can improve the capacity retention. In this work, the role of solvent choice on the electrochemical performance of Ge electrode is presented by a systematic comparison of the SEI layers in ethylene carbonate (EC)-based and fluoroethylene carbonate (FEC)-based electrolytes. The results show that the presence of FEC as a cosolvent in a binary or ternary solvent electrolyte results in an excellent capacity retention of ∼85% after 200 cycles at the current density of 500 mA g−1; while EC-based electrode suffers a rapid capacity degradation with a capacity retention of just 17% at the end of 200 cycles. Post analysis by an extensive use of X-ray photoelectron spectroscopy (XPS) was carried out, which showed that the presence of Li2O in FEC-based SEIs was the origin for the improved electrochemical performance.
English