Journal Article
Science, vol. 362, iss. 6415, pp. 705-709, 2018
Authors
Hao Shen, Jorge A. Fallas, Eric Lynch, William Sheffler, Bradley Parry, Nicholas Jannetty, Justin Decarreau, Michael Wagenbach, Juan Jesus Vicente, Jiajun Chen, Lei Wang, Quinton Dowling, Gustav Oberdorfer, Lance Stewart, Linda Wordeman, James De Yoreo, Christine Jacobs-Wagner, Justin Kollman, David Baker
Abstract
Built to be reversible
There has been some success in designing stable peptide filaments; however, mimicking the reversible assembly of many natural protein filaments is challenging. Dynamic filaments usually comprise independently folded and asymmetric proteins and using such building blocks requires the design of multiple intermonomer interfaces. Shen
et al.
report the design of self-assembling helical filaments based on previously designed stable repeat proteins. The filaments are micron scale, and their diameter can be tuned by varying the number of repeats in the monomer. Anchor and capping units, built from monomers that lack an interaction interface, can be used to control assembly and disassembly.
Science
, this issue p.
705