Journal Article
Bulletin of the American Meteorological Society, vol. 102, iss. 2, pp. E244-E272, 2021
Authors
H. J. S. Fernando, I. Gultepe, C. Dorman, E. Pardyjak, Q. Wang, S. W Hoch, D. Richter, E. Creegan, S. Gaberšek, T. Bullock, C. Hocut, R. Chang, D. Alappattu, R. Dimitrova, D. Flagg, A. Grachev, R. Krishnamurthy, D. K. Singh, I. Lozovatsky, B. Nagare, A. Sharma, S. Wagh, C. Wainwright, M. Wroblewski, R. Yamaguchi, S. Bardoel, R. S. Coppersmith, N. Chisholm, E. Gonzalez, N. Gunawardena, O. Hyde, T. Morrison, A. Olson, A. Perelet, W. Perrie, S. Wang, B. Wauer
Abstract
AbstractC-FOG is a comprehensive bi-national project dealing with the formation, persistence, and dissipation (life cycle) of fog in coastal areas (coastal fog) controlled by land, marine, and atmospheric processes. Given its inherent complexity, coastal-fog literature has mainly focused on case studies, and there is a continuing need for research that integrates across processes (e.g., air–sea–land interactions, environmental flow, aerosol transport, and chemistry), dynamics (two-phase flow and turbulence), microphysics (nucleation, droplet characterization), and thermodynamics (heat transfer and phase changes) through field observations and modeling. Central to C-FOG was a field campaign in eastern Canada from 1 September to 8 October 2018, covering four land sites in Newfoundland and Nova Scotia and an adjacent coastal strip transected by the Research Vessel Hugh R. Sharp. An array of in situ, path-integrating, and remote sensing instruments gathered data across a swath of space–time scales relevant to fog life cycle. Satellite and reanalysis products, routine meteorological observations, numerical weather prediction model (WRF and COAMPS) outputs, large-eddy simulations, and phenomenological modeling underpin the interpretation of field observations in a multiscale and multiplatform framework that helps identify and remedy numerical model deficiencies. An overview of the C-FOG field campaign and some preliminary analysis/findings are presented in this paper.