Journal Article
MRS Communications, vol. 10, iss. 4, pp. 594-599, 2020
Authors
Lance Hubbard, Ryan Sumner, Martin Liezers, Trevor Cell, Clara Reed, Nicolas Uhnak, Caleb Allen, Brittney Berry, Hugh Currah, Erin Fuller, Erin Kinney, Nathaniel Smith, Michael Foxe, April Carman
Abstract
AbstractTracing the flow of solid matter during an explosion requires a rugged tag that can be measured by a unique identifiable signature. Silica-covered semiconductor quantum dots (QDs) provide a unique and tunable photoluminescent signature that emits from within a sacrificial outer layer. Five types of silica-covered zinc sulfide QDs were synthesized and covalently bound to commercial luminescent powders. The combination of five dots and five powders enables a matrix of 25 unique tags. The tracers are shown to be tolerant of environments associated with chemical explosives and provides a unique tag to evaluate debris fields.