Characterizing the Influence of Organic Polymers on the Specific Reactivity of Particulate Remedial Amendments

Journal Article
Frontiers in Environmental Science, vol. 9, 2021
Katherine A. Muller, Lirong Zhong, Christopher E. Bagwell
Commercially available particulate amendments demonstrate high reactivity for effective treatment of water soluble organic and inorganic contaminants in laboratory studies; however, transport of these particles is constrained in the subsurface. In many field applications, particulate amendments are mixed with organic polymers to enhance mobility for direct push applications or stabilize suspensions for high mass loadings. As such, the interactions between particulate amendments, organic polymers and contaminant species need to be systematically investigated to properly understand mechanistic processes that facilitate predictive performance metrics for specific applications in situ. In this study, batch experiments were conducted to quantify the effects of organic polymers (xanthan gum, guar gum, and sodium alginate), polymer concentration (800 and 4,000 mg/L), and aging (up to 28 days) on chromate treatment rate and capacity by two classes of amendments: reductants [granular zero-valent iron (gZVI), micron-ZVI (mZVI), sulfur modified iron (SMI)], and an adsorbent (bismuth sub-nitrate). When particulate amendments were suspended in polymer solutions, reductants retained between 84–100% of the amendment treatment capacity. Conversely, the adsorbent maintained 63–97% relative treatment capacity of the no-polymer control. Polymer solutions had a more pronounced impact on the rate of chromate removal; first order rates of chemical reduction decreased by as much as 70% and adsorption by up to 81% relative to the no-polymer controls. Polymer–amendment aging experiments also showed decreased Cr(VI) treatment capacity; reductants decreased by as much as 24% and adsorption decreased by as much as 44% after 28 days of incubation. While polymer suspensions are needed to aid the injection of particulate amendments into the subsurface, the results from this study indicate potential losses of treatment capacity and a decrease in the rate of remedial performance due to the physical and chemical interactions between polymer suspensions and reactive particulate amendments. Simple batch systems provide baseline characterization of tripartite interactions for the removal of Cr(VI). Additional work is needed to quantify the full impact of polymers on remedial outcomes under site relevant conditions at field scale.