Quantifying the Uncertainty of the Future Hydrological Impacts of Climate Change: Comparative Analysis of an Advanced Hierarchical Sensitivity in Humid and Semiarid Basins

Journal Article
Journal of Hydrometeorology, vol. 22, iss. 3, pp. 601-621, 2021
Jiali Ju, Heng Dai, Chuanhao Wu, Bill X. Hu, Ming Ye, Xingyuan Chen, Dongwei Gui, Haifan Liu, Jin Zhang
AbstractComparison and quantification of different uncertainties of future climate change involved in the modeling of a hydrological system are highly important for both hydrological modelers and policy-makers. However, few studies have accurately estimated the relative importance of different sources of uncertainty at different spatiotemporal scales. Here, a hierarchical sensitivity analysis framework (HSAF) incorporated with a variance-based global sensitivity analysis is developed to quantify the spatiotemporal contributions of different uncertainties in hydrological impacts of climate change in two different climatic (humid and semiarid) basins in China. The uncertainty sources include three emission scenarios (ESs), 20 global climate models (GCs), three hydrological models (HMs), and the associated sensitive hydrological parameters (PAs) screened and sampled by the Morris and Latin hypercube sampling methods, respectively. The results indicate that the overall trend of uncertainty is PA > HM > GC > ES, but their uncertainties have discrepancies in projections of different hydrological variables. The HM uncertainty in annual and monthly discharge projections is generally larger than the PA uncertainty in the humid basin than semiarid basin. The PA has greater uncertainty in extreme hydrological event (annual peak discharge) projections than in annual discharge projections for both basins (particularly for the humid basin), but contributes larger uncertainty to annual and monthly discharge projections in the semiarid basin than humid basin. The GC contributes larger uncertainty in all the hydrological variables projections in the humid basin than semiarid basin, while the ES uncertainty is rather limited in both basins. Overall, our results suggest there is greater spatiotemporal variability of hydrological uncertainty in more arid regions.