Efficient Intermolecular Energy Exchange and Soft Ionization of Water at Nanoplatelet Interfaces

Publication Image

Description

X-ray, energetic photon, and electron irradiation can ionize and electronically excite target atoms and molecules. These excitations undergo complicated relaxation and energy-transfer processes that ultimately determine the manifold system responses to the deposited excess energy. In weakly bound gas- and solution-phase samples, intermolecular Coulomb decay (ICD) and electron-transfer-mediated decay (ETMD) can occur with neighboring atoms or molecules, leading to efficient transfer of the excess energy to the surroundings. In ionic solids such as metal oxides, intra- and interatomic Auger decay produces localized final states that lead to lattice damage and typically the removal of cations from the substrate. The relative importance of Auger-stimulated damage (ASD) versus ICD and ETMD in microsolvated nanoparticle interfaces is not known. Though ASD is generally expected, essentially no lattice damage resulting from the ionization and electronic excitation of microsolvated boehmite (AlOOH) nanoplatelets has been detected. Rather efficient energy transfer and soft ionization of interfacial water molecules has been observed. This is likely a general phenomenon at gas–oxyhydroxide nanoparticle interfaces where the density of states of the ionized chemisorbed species significantly overlaps with the core hole states of the solid.

English