The role of surface hydroxyls on the radiolysis of gibbsite and boehmite nanoplatelets

Publication Image


Understanding mechanistic pathways to radiolytic hydrogen generation by metal oxyhydroxide nanomaterials is challenging because of the difficulties of distinguishing key locations of OH bond scission, from structural interiors to hydroxylated surfaces to physi-sorbed water molecules. Here we exploited the interface-selectivity of vibrational sum frequency generation (VSFG) to isolate surface versus bulk hydroxyl groups for gibbsite and boehmite nanoplatelets before and after 60Co irradiation at dose levels of approximately 7.0 and 29.6 Mrad. While high-resolution microscopy revealed no effect on particle bulk and surface structures, VSFG results clearly indicated up to 83% and 94% radiation-induced surface OH bond scission for gibbsite and boehmite, respectively, a substantially higher proportion than observed for interior OH groups by IR and Raman spectroscopy. Electron paramagnetic spectroscopy revealed that the major radiolysis products bound in the mineral structures are trapped electrons, Oradical dot, O2−radical dot and possibly F-centers in gibbsite, and Hradical dot, Oradical dot and O3−radical dot in boehmite, which persist on the time frame of several months. The entrapped radiolysis products appear to be highly stable, enduring re-hydration of particle surfaces, and likely reflect a permanent adjustment in the thermodynamic stabilities of these nanomaterials.