Real-time electronic structure methods provide an unprecedented view of electron dynamics and ultrafast spectroscopy on the atto- and femtosecond time scale with vast potential to yield new insights into the electronic behavior of molecules and materials. In this Review, we discuss the fundamental...
Filter results
Category
- Scientific Discovery (369)
- Biology (258)
- Earth System Science (161)
- Human Health (112)
- Integrative Omics (73)
- Microbiome Science (47)
- National Security (31)
- Computational Research (25)
- Computing & Analytics (17)
- Chemical & Biological Signatures Science (12)
- Energy Resiliency (12)
- Weapons of Mass Effect (12)
- Chemistry (10)
- Data Analytics & Machine Learning (9)
- Computational Mathematics & Statistics (7)
- Materials Science (7)
- Atmospheric Science (6)
- Data Analytics & Machine Learning (6)
- Renewable Energy (6)
- Visual Analytics (6)
- Coastal Science (4)
- Ecosystem Science (4)
- Energy Storage (3)
- Plant Science (3)
- Solar Energy (3)
- Bioenergy Technologies (2)
- Cybersecurity (2)
- Distribution (2)
- Electric Grid Modernization (2)
- Energy Efficiency (2)
- Grid Cybersecurity (2)
- Transportation (2)
- Computational Mathematics & Statistics (1)
- Grid Analytics (1)
- High-Performance Computing (1)
- Subsurface Science (1)
- Terrestrial Aquatics (1)
- Wind Energy (1)
Tags
- Virology (77)
- Immune Response (51)
- Time Sampled Measurement Datasets (51)
- Differential Expression Analysis (46)
- Gene expression profile data (45)
- Homo sapiens (42)
- Predictive Phenomics (34)
- Mass spectrometry data (32)
- Multi-Omics (32)
- Viruses (28)
- Omics (26)
- Mass Spectrometry (24)
- Soil Microbiology (24)
- Health (23)
- Virus (23)
- MERS-CoV (19)
- Mus musculus (19)
- Proteomics (18)
- Synthetic (14)
- Genomics (13)
- sequencing (13)
- West Nile virus (13)
- High Throughput Sequencing (11)
- Influenza A (11)
- TA2 (11)
- Metagenomics (10)
- PerCon SFA (10)
- S. elongatus PCC 7942 (10)
- TA1 (10)
- Ebola (9)
Determining kinetic parameters such as activation energy (Ea), pre-exponential factor (A), rate constants, and reaction order (n) via thermal analysis techniques is important to material synthesis and fabrication, industrial production, biomedicals, energy storage, catalysis, etc. Various kinetic...
Understanding, controlling, and preventing aggregation of suspended particles is of fundamental importance in a number of scientific and industrial fields. There are several methods for analyzing aggregate morphology and aggregation kinetics, but small-angle scattering (SAS) techniques provide...
Understanding the reactivity behavior of aluminum oxyhydroxide phases, widely present in nuclear waste tanks, in radiation environments is essential to develop better nuclear waste processing approaches. Recent experiments using vibrational sum frequency generation, a surface sensitive technique...
The iron oxy-hydroxide lepidocrocite (đžÎł-FeOOH) is an abundant mineral critical to a number of chemical and technological applications. Of particular interest are the ground state and finite temperature magnetic order and the subsequent impact this has upon crystal properties. The magnetic...
The theoretical prediction of x-ray absorption spectra (XAS) has become commonplace in electronic structure theory. The ability to better model and understand L-edge spectra is of great interest in the study of transition metal complexes and a wide variety of solid state materials. However, until...
Nitrite (NO2â) is a prevalent nitrogen oxyanion in environmental and industrial processes, but its behavior in solution, including ion pair formation, is complex. This solution phase complexity impacts industries such as nuclear waste treatment, where NO2â significantly affects the solubility of...
Understanding the structure and composition of aluminate complexes in extremely alkaline systems such as Bayer liquors has received enormous attention due to their fundamental and industrial importance. However, obtaining direct molecular information of the underlying ionâion interactions using...
Understanding the origin of reactive species following ionization in aqueous systems is an important aspect of radiationâmatter interactions as the initial reactive species lead to production of radicals and subsequent long-term radiation damage. Tunable ultrafast X-ray free-electron pulses provide...
Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D)...
The recent development of the Ehrenfest dynamics approach in the nuclear-electronic orbital (NEO) framework provides a promising way to simulate coupled nuclear-electronic dynamics. Our previous study showed that the NEO-Ehrenfest approach with a semiclassical traveling proton basis method yields...
Effects of dissolved paramagnetic oxygen (O2) in water on 1H nuclear magnetic resonance (NMR) Carr-Purcell-Meiboom-Gill (CPMG) experiments is evaluated at a 1H Larmor frequency of 2 MHz. Dissolution of O2 into water significantly reduces the 1H transverse relaxation coefficient (T2). For...
The split of the 1b1 peak observed in the X-ray emission (XE) spectrum of liquid water has been the focus of intense research. Although several hypotheses have been proposed to explain the origin of this split, a consensus has not yet been reached. Here, we introduce a novel theoretical/computation...
The geometric organization and force networks of 3D dense suspensions that exhibit both shear thinning and thickening have been examined as a function of varying strength of interparticle attractive interactions using lubrication flow discrete element simulations. Significant rearrangement of the...
Gibbsite, bayerite, and boehmite are important aluminum (oxy)hydroxide minerals in nature and have been widely deployed in various industrial applications. They are also major components in caustic nuclear wastes stored at various U.S. locations. Knowledge of their crystallization and phase...