Showing 496 - 510 of 20030
Journal Article
Soil Biology and Biochemistry, vol. 169, pp. 108675, 2022
Authors
A.M. Hopple, S.C. Pennington, J.P. Megonigal, V. Bailey, B. Bond-Lamberty
Journal Article
mBio, vol. 13, iss. 3, 2022
Authors
Sarah C. Feid, Hanna E. Walukiewicz, Xiaoyi Wang, Ernesto S. Nakayasu, Christopher V. Rao, Alan J. Wolfe, Vaughn S. Cooper
Journal Article
New Phytologist, 2022
Authors
Weibin Li, Nate G. McDowell, Hongxia Zhang, Wenzhi Wang, D. Scott Mackay, Riley Leff, Peipei Zhang, Nicholas D. Ward, et al.
Journal Article
Atmospheric Chemistry and Physics, vol. 22, iss. 11, pp. 7131-7142, 2022
Authors
Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, Huimin Li, Mengyun Li, Lili Ren, Xu Yue, et al.

Crystallization of Al3+-bearing solid phases from highly alkaline Na2O:Al2O3:H2O solutions commonly necessitates an Al3+ coordination change from tetrahedral to octahedral, but intermediate coordination states are often difficult to isolate. Here, a similar Al3+ coordination change process is...

Predicting accurate nuclear magnetic resonance chemical shieldings relies upon cancellation of different types of errors between the theoretically calculated shielding constant of the analyte of interest and the reference. Often, the intrinsic error in computed shieldings due to basis sets...

The quantum mechanical treatment of both electrons and nuclei is crucial in nonadiabatic dynamical processes such as proton-coupled electron transfer. The nuclear−electronic orbital (NEO) method provides an elegant framework for including nuclear quantum effects beyond the Born–Oppenheimer...

The incorporation of relatively minor impurity metals onto metal (oxy)hydroxides can strongly impact solubility. In complex highly alkaline multicomponent radioactive tank wastes such as those at the Hanford Nuclear Reservation, tests indicate that the surface area-normalized dissolution rate of...

Tetrahedrally coordinated aluminate Al(OH)4- and dialuminate Al2O(OH)62- anions are considered to be major species in aluminum-rich alkaline solutions. However, their relative abundance remains difficult to spectroscopically quantify due local structure similarities and poorly understood effects...

Understanding mechanistic pathways to radiolytic hydrogen generation by metal oxyhydroxide nanomaterials is challenging because of the difficulties of distinguishing key locations of OH bond scission, from structural interiors to hydroxylated surfaces to physi-sorbed water molecules. Here we...

The stability of aluminum oxyhydroxide (AlOOH, boehmite) to radiolysis and dehydration to alumina (γ-Al2O3) under vacuum was investigated using TGA followed by detailed, structural analysis with Raman, powder X-Ray Diffraction (pXRD), high energy X-Ray Diffraction (heXRD), 27Al Magic Angle Spinning...

In highly alkaline “water-in-salt” Na2O/Al2O3/H2O solutions where the monomeric Al(OH)4– anion dominates, isolation of transitional species that seed crystallization of sodium aluminate salt hydrates has been challenging. For example, discrimination of dimeric [for example, Al2O(OH)62–] species via...

Real-time electronic structure methods provide an unprecedented view of electron dynamics and ultrafast spectroscopy on the atto- and femtosecond time scale with vast potential to yield new insights into the electronic behavior of molecules and materials. In this Review, we discuss the fundamental...

The recently developed real-time nuclear–electronic orbital (RT-NEO) approach provides an elegant framework for treating electrons and selected nuclei, typically protons, quantum mechanically in nonequilibrium dynamical processes. However, the RT-NEO approach neglects the motion of the other nuclei...

The molecular speciation of aluminum (Al3+) in alkaline solutions is fundamental to its precipitation chemistry within a number of industrial applications that include ore refinement and industrial processing of Al wastes. Under these conditions, Al3+ is predominantly Al(OH)4–, while at high [Al3+]...